Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole.

نویسندگان

  • Brian W Kwan
  • Devon O Osbourne
  • Ying Hu
  • Michael J Benedik
  • Thomas K Wood
چکیده

Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c-di-GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c-di-GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c-di-GMP and phosphodiesterases that breakdown c-di-GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c-di-GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP-specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxin YafQ increases persister cell formation by reducing indole signalling.

Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame ...

متن کامل

P-90: Effect of Phosphodiesterase Type3 Inhibitor, Cilostamide, on The Developmental Competence of Ovine OocytesIsolated by Glucose 6-Phosphate Dehydrogenase Activity

Background: The developmental competence of oocytes matured in vitro (IVM) is yet far below than in vivo counterparts. Recent studies suggest that the asynchrony between nuclear/cytoplasmic maturation and the initial low/heterogeneous quality of oocytes are the most important factors affecting IVM success. We investigated whether selection of growing oocytes (based on their glucose 6- phosphate...

متن کامل

Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells.

The cAMP/protein kinase A (PKA)-dependent insertion of water channel aquaporin-2 (AQP2)-bearing vesicles into the plasma membrane in renal collecting duct principal cells (AQP2 shuttle) constitutes the molecular basis of arginine vasopressin (AVP)-regulated water reabsorption. cAMP/PKA signaling systems are compartmentalized by A kinase anchoring proteins (AKAP) that tether PKA to subcellular s...

متن کامل

Expression of Recombinant Phosphodiesterase 3A and 3B Using Baculovirus Expression System

Background: Phosphodiesterase 3A (PDE3A) and phosphodiesterase 3B (PDE3B) play a critical role in the regulation of intracellular level of adenosine 3´,5´-cyclic monophosphate (cyclic AMP, cAMP) and guanosine 3´,5´-cyclic monophosphate (cyclic GMP, cGMP). Subsequently PDE3 inhibitors have shown to relax vascular and inhibit platelet aggregation in cardiovascular disease. Objectives: In th...

متن کامل

A cytogenetic analysis of cyclic nucleotide phosphodiesterase activities in Drosophila.

The genome of Drosophila melanogaster has been surveyed for chromosomal regions which exert a dosage effect on the activities of cAMP phosphodiesterase or cGMP phosphodiesterase. Two regions increase cAMP phosphodiesterase activity when present as duplications. A region of the X chromosome increases cAMP phosphodiesterase activity when duplicated and decreases that activity when deficient. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 112 3  شماره 

صفحات  -

تاریخ انتشار 2015